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There is little doubt that the nuclear Overhauser effect is potentially the most 
powerful tool for the investigation of the solution structures of biological macro- 
molecules since it can be used both to demonstrate the proximity of two protons in 
space and to determine their separation (I-IO). Given the interconvertibility of 
intramolecular distances, torsion angles, and Cartesian coordinates, providing the 
chirality of the structure is known (11-14) a large interproton distance data set can 
in principle be used either to solve ab initio the complete three-dimensional structure 
of a  molecule in solution using a distance-geometry algorithm (II, 14) or to refine 
an initial trial model using either constrained least-squares minimization procedures 
or molecular dynamics calculations incorporating the distance data in the form of 
pseudopotentials. In the case of small proteins, it is usually sufficient to obtain a 
qualitative assessment of distance, as has been demonstrated in the case of lipid 
bound glucagon (15) and scorpion insectotoxin ISA (16). In the case of oligonucleotides 
a qualitative assessment of distance is sufficient to distinguish the three classes of 
DNA conformations, namely right-handed A and B DNA and left-handed Z  DNA, 
but is not adequate for further refinement (8, 27-20). This requires distance 
determinations to an accuracy of - +0.2 A (9, 21, 22). Considering large molecules 
for which 07, 9 1 (the spin-diffusion limit), such accuracy can in principle be 
obtained by measuring the initial slope of the time development of the NOE. This 
is because the initial slope of the NOE, Nij, is simply given by (23, 24) 

where aO is the cross-relaxation rate between protons i and j given by (25, 26) 

y4h2 
-( 

67,~ ao = 1or;. 7eff - 1  + 4w2& 

where y and h have their usual meanings, T,~ is the effective correlation time of 
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the i-j interproton vector, and r, is the distance between protons i and j. (Note the 
sign convention of Kalk and Berendsen (26) is used.) Distance ratios, or distances 
if one distance is already known, can then be obtained from 

(rij/rkl) = (flkl/flij) 
I/6 [31 

providing the effective correlation times of the i-j and k-l interproton vectors are 
the same. In practice, initial slope measurements are not entirely trivial. First, the 
magnitudes of the NOES at very short times are small; this inevitably poses a signal- 
to-noise ratio problem. Second, the measured NOE at short times may not reflect 
the true magnitude of the NOE. Thus, in the one-dimensional experiment involving 
the saturation of resonance j for a time t followed by the observation of the 
intensities of the other proton resonances, it may not be feasible, owing to resonance 
overlap, to use a sufficiently high power approximating to instantaneous saturation. 
Similarly, in the two-dimensional experiment, it may not be possible to completely 
remove the contribution from zero quantum coherence transfer to the intensity of 
a cross peak involving two coupled spins (27). Third, it may not be possible, for 
reasons of length of measuring time, to obtain a sufficient number of points covering 
the time course of the NOE with adequate signal-to-noise ratios. Finally, the 
measured initial slope for the NOE between protons i and j will not reflect the true 
initial slope if both CT~ Q (T;k and U;j 6 ujk where k represents a third proton. Thus, 
from the practical viewpoint of determining interproton distance ratios and distances 
it is important to ask two questions: (1) How many time points for the NOE time 
course does one really need to obtain; and (2) What is the time dependence of the 
magnitude of the error Ark/ introduced into the determination of the unknown 
interproton distance rk/ when rk/ is calculated from the approximate relationship 

rk/ - cj[Ni,(t>/Nkl(t)l”6 - rij[aij(t)/akl(t)l”6 [41 

as opposed to the exact expression [3], where rii is a known fixed internal reference 
distance, Nti(t) and Nkl(t) are the NOES observed between protons i and j and 
between protons k and 1, respectively, in the one-dimensional selective saturation 
experiment at time t, and c+(t) and ukj(t) are the corresponding cross-peak intensities 
in the two-dimensional NOE experiment. 

To answer these two questions we consider the three-spin system illustrated in 
Fig. 1. This system provides a perfectly adequate description of a multiple-spin 
system as demonstrated by previous calculations for both the one- (24, 25, 28) and 
two- (29) dimensional NOE experiments. The z magnetization of these three spins 
is governed by three coupled ordinary differential expressions (25) which can be 
conveniently expressed in matrix form: 

1 is the magnetization of proton I at time t, I0 is the equilibrium magnetization of 
proton 1 prior to the perturbation which permits exchange through cross-relaxation 
to occur, pI is the total spin-lattice relaxation rate of proton Z given by c,,, uIJ 
+ RI, (where RI1 is the external relaxation rate), and similarly for protons J and 5’. 
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A 

PJ -( aU+(T*J) 

FIG. 1. Three-spin system used for the simulations presented in Fig. 2. 

For the one-dimensional experiment we consider the case where resonance J is 
selectively saturated by a second radiofrequency field for a time t followed by the 
observation of the intensities of the other resonances. Thus, we have I,, = Jo = S,, 
= 1, and at t = 0, Z = S = 1, and J = 0. The magnitude of the NOE, NJI, observed 
on resonance Z following saturation of resonance J is simply (Z(t) - ZO)/Zo, and 
similarly for the NOE, NJs, observed on resonance S. 

The two-dimensional experiment consists of the basic sequence 90”~t,-90”-7,- 
90”~t, (30, 31). In the evolution period t, the spins are labeled according to their 
chemical shifts and in the mixing time 7, (equivalent to the saturation time t in 
the one-dimensional experiment) exchange of magnetization between the spins 
occurs through cross-relaxation. The acquisition time is t2 and the experiment is 
repeated for successive tl values. Two-dimensional Fourier transformation with 
respect to t2 and t, then results in a two-dimensional spectrum. This consists of 
diagonal peaks representing the conventional one-dimensional spectrum and pairs 
of cross-peaks in symmetrical locations with respect to the diagonal peaks which 
arise from cross-relaxation. Bearing the considerations of symmetry in mind, the 
mathematics of the dynamics of the intensity uJJ of the diagonal peak at location 
(wiJ, wW) and the intensities of the cross-peaks aJI and aJs at locations (wJ, w2,) 

and (WI/, wzs), respectively, are identical in form to the one-dimensional selective 
inversion experiment 180” s-t-90°ns with the selective 180” pulse applied to resonance 
J (31, 32). In the latter case, IO = Jo = S0 with initial conditions (at t = 0) Z = S 
= 1 and J = - 1. In the two-dimensional experiment, all that needs to be done to 
obtain the dynamics of aJJ(t), aJ,(t) and u&t) is to modify Eq. [5] by setting I0 = Jo 
= So = 0, replacing J by UJJ, Z by UJI and S by u Js, with initial conditions aJI = aJs 

=OandaJJ= 1. 
In the calculations presented in Fig. 2 we have integrated Eq. [5] numerically 

with conditions appropriate to the one- and two-dimensional experiments: WT,~ is 
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FIG. 2. Time dependence of(i) the error Ar, (A) in the estimate of the distance r,, calculated using 
the approximation [4] with r,, as the internal reference distance, (ii) the magnitudes of the NOES, NJ, and 
N,.s, observed on resonances I and S, respectively, following irradiation of resonance J in the one- 
dimensional NOE experiment, and (iii) the cross-peak intensities a,, and a,, for the two-dimensional 
NOE experiment, for different values of rsr and r,s. The continuous lines are the time courses for the 
onedimensional experiment and the dashed lines those for the twodimensional experiment. ArsJ is 
calculated using Eq. [6] for the one-dimensional experiment and Eq. [7] for the two-dimensional one. 
WT,~ has a value of 15.7 (which corresponds to 7.* = 5 ns at a spectrometer frequency of 500 MHz), and 
the external relaxation rates (pi - c,,, uil) have a value of 0.5 SK’ for the three protons, I, J, and S. The 
internal reference distance rrJ has a value of 2.4 A which corresponds to a value of 1.47 SK’ for mi,. rsr 
and osJ have values of 2.1 A and 3.28 s-’ (A), 3.0 8, and 0.39 s-’ (B), and 3.8 8, and 0.093 s-’ (C). rrs 
and 01s have values of 2. I A and 3.28 s-’ (curves a and a’), 3.0 A and 0.39 s-’ (curves b and by, and 4.6 
A and 0.03 s-’ (curves c and c’) (a, b, and c refer to the curves for the one-dimensional experiment, and 
a’, b’, and c’ to those for the two-dimensional experiment.) Thus, the relationships between the cross- 
relaxation rates are as follows: (A) 0~ z g,, and 0~ 2 01s; (B) os/ < o,,, osr < ors (curves a, a’), 
urn > uJs (curves b, b’, c, c’); (C) LTS < or,, csr < UIS (curves a, a’, b, b’) as, > o,~ (curves c, c’). 

set to 15.7 for the three inter-proton vectors which corresponds to a correlation time 
T,~ of 5 ns at a spectrometer frequency of 500 MHz; the value of r[J, the reference 
distance, is 2.4 A which corresponds to a value of 1.47 SC’ for c[J; and all three 
external relaxation mteS are set t0 0.5 S-‘. The error ArSJ, in Ca]CU]ating rSJ from 
the approximation [4] as a function of time is given by 

ArsJ(f) = rIJ{ WJI(O/~JS(~)I 1’6 - [~IJ/~.sY~“~) 
for the one-dimensional experiment and by 

Ard7d = cJ{ [~JI(T~/~Js(~~I “6 - [~IJ/~sJ~“~) 
for the two-dimensional experiment. 

Fl 

[71 
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In Fig. 2, we examine the error Ar,, as well as the magnitudes of the NOES (one- 
dimensional experiment) and cross-peaks (two-dimensional experiment) as a function 
of time (saturation or mixing time) for different values of rsJ and rls. Four main 
features emerge from the time dependence: 

(1) The initial slope of the time development of the one-dimensional NOES is 
the same as that of the cross-peaks in the two-dimensional NOES. 

(2) The approximation [4] introduces only small errors (GO.2 A) in the estimate 
of r,, up to relatively long times (-0.4 s in the present case) for both the one- and 
two-dimensional experiments, providing either asJ b aIJ or usJ b uIs. This is despite 
the fact that the initial rate approximation (csJ - NJst - aJst) breaks down at 
much shorter times (-0.05 s in the present case). 

(3) The errors in the two-dimensional experiment arising from the use of Eq. [4] 
are always larger at any given time t than those in the one-dimensional experiment. 
This is obvious from the nature of the time courses of the NOES and cross-peak 
intensities: whereas the former increase in absolute magnitude to a maximum value 
of - 1, the latter first exhibit an increase in magnitude followed by a decrease back 
towards zero. A corollary of this behavior is that the magnitudes of the one- 
dimensional NOES are larger than those of the corresponding cross-peaks in the 
time domain which is useful for determining distances from an experimental 
viewpoint (viz., 0.1 to 0.4 s for the conditions in the calculations). This clearly 
constitutes a potential advantage of the one-dimensional experiment over the two- 
dimensional one when quantitative information needs to be extracted from the 
experimental data. 

(4) If the cross-relaxation rate of the S-J vector is greater than that of the 
reference Z-J vector (Fig. 2A), Eq. [4] leads to an overestimation of rsJ. If, on the 
other hand, the cross-relaxation rate of the S-J vector is less than that of the 
reference Z-J vector (Figs. 2B and C), the value of rSJ will be underestimated 
through the use of Eq. [4]. 

In practical terms, what do we conclude from these calculations? Any potential 
advantage of measuring the time development of the NOES to extract cross- 
relaxation rates and calculate distances using Eq. [3], as opposed to measuring the 
NOES at one or at the most two well chosen time points with excellent signal-to- 
noise ratios and calculating distances from Eq. [4], is insignificant when considerations 
of experimental errors are borne in mind. Thus, all that is required of the investigator 
is to determine the appropriate time domain for the NOE experiment. In the one- 
dimensional case, this is easily achieved by measuring the time courses of a few 
selected NOES, in particular those involving protons a fixed distance apart which 
will later be used as internal reference distances. For example, considering proteins 
and nucleic acids, this would involve NOES between two methylene protons on the 
same carbon atom which are separated by - 1.8 A or between two adjacent protons 
on an aromatic ring which are separated by -2.5 A. These fixed distances are 
known to a precision of better than kO.05 A so that any uncertainty in their values 
will only make a minimal contribution to the error in the determination of the 
unknown interproton distances. Such a preliminary set of experiments also has the 
benefit of enabling one to determine the effective correlation times of the fixed 
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interproton distance vectors using Eq. [2]. With this information in hand, the 
appropriate time domain for experiments requiring excellent signal-to-noise ratios 
is easily chosen. In the one-dimensional case, one irradiation time is usually 
adequate. For the two-dimensional experiment, on the other hand, it is probably 
safer to carry out measurements with two mixing times. 

One final point should be borne in mind when interpreting NOE data. Namely, 
the effective correlation time of the reference interproton vector may not be the 
same as that of the unknown interproton vector. This will necessarily result in 
further errors; given the I-;~ dependence of au, however, these will in general be 
fairly small. Nevertheless, certain practical considerations can help in this respect. 
Thus, it is clear that if different fixed distance interproton vectors have different 
effective correlation times, differential internal motion must be present. This is in 
fact the case for double stranded DNA oligonucleotides where the effective correlation 
time of the H2’-H2” vector in the deoxyribose sugar ring is significantly smaller 
than that of the H5-H6 vector of the cytosine bases (33). The question then arises 
as to which reference distance should be used in calculating a particular unknown 
distance from the NOE data. Fortunately, this choice is not impossible and can be 
based on stereochemical considerations taking into account the expected ranges of 
the unknown interproton distances and the expected motions of the different 
interproton vectors (21). The latter can often be assessed from the analysis of 
crystallographic thermal factors, 13C NMR relaxation studies and molecular dynamics 
calculations on related systems. 
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